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Abstract

If a parametric model for the ability distribution is not assumed, then the customary two-parameter

and three-parameter logistic models for item response analysis present identifiability problems not

encountered with the Rasch model. These problems impose substantial restrictions on possible

models for ability distributions.
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In the two-parameter logistic (2PL) and three-parameter logistic (3PL) models commonly

employed in item response analysis, parameter estimation is typically accomplished by use of

marginal maximum likelihood based on an assumption of a normal ability distribution (Bock

& Lieberman, 1970; Bock & Aitkin, 1981); however, attempts have been made to consider

marginal estimation with less restricted ability distributions (Heinen, 1996, chap. 6). In Section 2,

exploitation of results previously derived for the Rasch model (Cressie & Holland, 1983) permits a

demonstration that marginal estimation with unrestricted ability distributions is problematic for

the 2PL and 3PL models because the general 2PL and 3PL models place insufficient restrictions

on the joint distribution of the item responses to permit identification of model parameters. In

Section 4, the problems encountered with the general 2PL and 3PL models are shown not to exist

in the Rasch model, and conditions are provided under which restricted versions of the 2PL and

3PL models place adequate restrictions on the joint distribution of the item responses so that

estimation of model parameters can be considered.

Nonetheless, as noted in Section 4, estimation of parameters may remain impractical even in

cases in which 2PL and 3PL models place adequate restrictions for parameter estimation to be

possible in principle. This issue is examined in the context of latent class models.

1. General Marginal Estimation

To address the fundamental difficulty with marginal estimation with less restricted ability

distributions requires some general results concerning maximum likelihood estimation for item

responses. In a test with binary responses, random variables Yij , 1 ≤ j ≤ q, 1 ≤ i ≤ n, are

observed, where n ≥ 1 and q ≥ 2 are integers, and Yij represents a response of examinee i on item

j of a test. The possible values of Yij are 1 (correct) and 0 (incorrect). Let Yi, 1 ≤ i ≤ n, denoted

the q-dimensional vector of responses Yij , 1 ≤ j ≤ q. If the examinees can be regarded as a simple

random sample from an infinite population of possible examinees, then the Yi are independent

and identically distributed.

To characterize the distribution of Yi, some preliminary notation is helpful. Let J be the set

of vectors of dimension q with coordinates 0 or 1, so that J has m = 2q elements and Yi is in J .

Let RJ be the set of arrays r with real coordinates ry for y in J , and let S be the unit simplex in

RJ , so that S consists of r in RJ such that ry ≥ 0 for y in J and
∑

y∈J ry = 1, and let S0 be the

set of r in S with all coordinates positive. For x real, let x be the member of RJ with all elements
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equal to x.

The distribution of Yi is characterized by p in S, where, for y in J , py is the probability that

Yi = y.

Inferences concerning p may be based on the array f of relative frequencies, where, for y in

J , fy is the fraction of the examinees i with Yi = y. The array f in S is then a sufficient statistic

for p. The log likelihood function ` then satisfies

`(p) = n
∑
p∈J

fy log py

for p in S, where the convention 0 log 0 = 0 is used. For any nonempty subset T of S, p̂ is a

maximum likelihood estimate of p for the model M(T ) that p is in T if p̂ is in T and `(p̂) is the

supremum `(T ) of `(p) for p in T .

It is well-known that, for the unrestricted model M(S), the unique maximum likelihood

estimate of p is f . If f is in T for a subset T of S, then f is also the unique maximum likelihood

estimate of p for model M(T ), for

`(f) = `(S) ≥ `(T )

and

`(f) ≤ `(T ).

Thus the maximum `(T ) of the log likelihood for model M(T ) is the same as the maximum `(S)

of the log likelihood for model M(S). The log likelihood ratio test statistic

L2 = 2n[`(S)− `(T )] = 0.

In this fashion, no evidence exists to discriminate between models M(T ) and M(S) even if T is a

proper subset of S.

In large samples, it is a simple matter to find a condition under which, as the sample size n

approaches ∞, the probability approaches 1 that f is the unique maximum likelihood estimate.

Let the interior ir(T ) of T relative to S be the union of all sets O ∩ S ⊂ T such that O is an open

subset of RJ . Let model M(T ) be said to be locally unrestricted if ir(T ) is nonempty, and let the

model be locally unrestricted at p in T if p is in ir(T ). The model is said to be locally restricted

if it is not locally unrestricted. If model M(T ) is locally restricted at p in ir(T ), then the weak

law of large numbers implies that, as the sample size n approaches ∞, the probability approaches
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1 that f is in ir(T ) and p̂ = f (Cramér, 1946, p. 254). Thus the probability approaches 1 that the

test statistic L2 = 0. In this fashion, it is clearly undesirable for a model to be locally unrestricted.

General Models for Item Responses With One-Dimensional Ability

Many apparently reasonable models for item responses are locally unrestricted. This problem

is examined in this section in terms of one-parameter logistic (1PL), two-parameter logistic

(2PL), and three-parameter logistic (3PL) models (Hambleton, Swaminathan, & Rogers, 1991,

ch. 2). To develop a general framework for the discussion, consider the general one-dimensional

model for item responses in which an ability parameter has one dimension. To each examinee

i, associate an unobserved random variable θi that represents the ability of that examinee. The

local independence assumption is made that, for each examinee i, the responses Yij , 1 ≤ j ≤ q,

are conditionally independent given θi. It is also assumed that the pairs (Yi, θi), 1 ≤ i ≤ n, are

independent and identically distributed. This latter assumption is consistent with the previous

assumption that the Yi are independent and identically distributed.

The common distribution function of the ability parameter θi is denoted by F . Associated

with each item j is a nondecreasing item characteristic curve (ICC) Pj , 0 < Pj < 1, such that, for

each real θ and each item j, 1 ≤ j ≤ q, and each examinee i, 1 ≤ i ≤ n, Pj(θ) is the probability

that Yij = 1 given that θi = θ. Let

Qj = 1− Pj (1)

be the ICC of 1− Yij , and let the item logit function λj be

λj = log(Pj/Qj) (2)

(Holland, 1990), so that

Pj = [1 + exp(−λj)]−1 (3)

and

Qj = [1 + exp(λj)]−1. (4)

Let λ be the q-dimensional function with coordinates λj for 1 ≤ j ≤ q. For q-dimensional vectors

a and b with respective coordinates aj and bj for 1 ≤ j ≤ q, let

a′b =
q∑

j=1

ajbj .
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Under the item response model, p is in S0, and

py =
∫  q∏

j=1

P
yj

j Q
1−yj

j

 dF, y ∈ J, (5)

(Cressie & Holland, 1983), so that the item characteristic curves Pj , 1 ≤ j ≤ q, and the

distribution F determine the common joint distribution of the Yi. Equivalently, if

V =
q∏

j=1

[1 + exp(λj)]−1, (6)

then the following variant on the Dutch identity holds:

py =
∫

V exp(y′λ)dF. (7)

(Holland, 1990).

Let P be the set of q-dimensional functions P on the real line with coordinates Pj , 1 ≤ j ≤ q,

that are strictly increasing real functions on the real line with values in (0, 1). Let Λ be the set

of q-dimensional functions λ with coordinates λj , 1 ≤ j ≤ q, that are strictly increasing real

functions on the real line. Let F be the set of real functions that are distribution functions of real

random variables. The assumption that the general one-dimensional model holds states in effect

that p is in the subset Sm of all p in S0 such that (5) holds for some P in P and some F in F

(Cramér, 1946, p. 57). The set Sm is a proper subset of S0 (Holland & Rosenbaum, 1986). The

set Sm can also be defined to be the set of p in S0 such that (6) and (7) hold for some λ in Λ and

some F in F .

In an item response model with a one-dimensional ability parameter, p is assumed to belong

to a nonempty subset T of Sm. In this section, some common item response models are examined

to determine whether they are locally unrestricted. The results summarized are obtained from

Theorem 5 and from dimensional analysis.

Rasch Models

In a general Rasch (1PL) model, λ is in the set Λ1 of λ in Λ such that

λ(θ) = (aθ)1− γ (8)

for some real a > 0 and some γ in Rq with coordinates γj , 1 ≤ j ≤ q. The common item

discrimination is a and the item difficulty of item j is βj = γj/a. No restriction is made on the
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ability distribution. Thus p is in the set S1 of p that satisfy (6) and (7) for F in F and for λ in Λ1.

Provided that q > 2, the model is locally restricted. Otherwise, the model is locally unrestricted.

A somewhat less general version of the Rasch model is the normal Rasch model that requires

that F is the cumulative normal distribution function Φ (Bock & Lieberman, 1970; Bock & Aitkin,

1981). In this model, p is in the set S1n of p that satisfy (6) and (7) for F = Φ and λ in Λ1. As

in the case of the general Rasch model, the normal Rasch model is locally restricted for q > 2 and

locally unrestricted for q = 2.

In a latent-class Rasch model for a given vector τ of distinct ability levels τk, 1 ≤ k ≤ K,

K ≥ 2 (Heinen, 1996), it is assumed that the Rasch model holds for F in the set Fτ of distribution

functions of random variables that only have values τk, 1 ≤ k ≤ K. The corresponding set S1τ

consists of p in Sm that satisfy (6) and (7) for some F in Fτ and some λ in Λ1. For q > 2, the

model is locally restricted. For q = 2, the model is locally unrestricted.

2PL Models

In a general 2PL model, λ is in the set Λ2 of λ in Λ such that

λ(θ) = θa− γ (9)

for some a in Rq with positive coordinates aj and some γ in Rq. Thus aj is the item discrimination

and βj = γj/aj is the item difficulty for item j. In the case of no restriction on the ability

distribution, p is in the set S2 of p that satisfy (6) and (7) for F in F and for some λ in

Λ2. Rather remarkably, the simple change from the constant item discrimination in the Rasch

model to variable item discrimination in the 2PL model results in a model that is always locally

unrestricted.

The normal 2PL model requires that F is the cumulative normal distribution function Φ. In

this model, p is in the set S2n of p that satisfy (6) and (7) for F = Φ and for λ in Λ2. The normal

2PL model is locally restricted for q > 2 and locally unrestricted for q = 2.

In a latent-class 2PL model for a given vector τ of distinct ability levels τk, 1 ≤ k ≤ K,

K ≥ 2, it is assumed that the 2PL model holds for F in the set Fτ . The corresponding set S2τ

consists of p in Sm that satisfy (6) and (7) for some F in Fτ and for some λ in Λ2. In this

case, local restriction occurs if 2q + K < 2q, and the model is locally unrestricted if q ≤ 3. As

discussed in Section 4, the theoretical existence of local restriction does not necessarily ensure
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that parameter estimation is really practical.

3PL Models

In a general 3PL model, it is assumed that p is in the set S3 of p in Sm such that (1) and (5)

hold for some F in F and some P in the set P3 of P in P such that, for real θ,

Pj(θ) = cj + (1− cj)[1 + exp(−ajθ + γj)]−1, 1 ≤ j ≤ q, (10)

for some real aj > 0, cj in [0, 1), and γj , 1 ≤ j ≤ q. Here cj is the item guessing parameter, aj is the

item discrimination, and βj = γj/aj is the item difficulty for item j. Clearly S1 ⊂ S2 ⊂ S3 ⊂ Sm,

so that the general 3PL model is locally unrestricted.

The normal 3PL model requires that F is the cumulative normal distribution function Φ. In

this model, p is in the set S3n of p that satisfy (1) and (5) for F = Φ and for P in P3. The normal

3PL model is locally restricted for q > 3 and locally unrestricted for q ≤ 3.

In a latent-class 3PL model for a given vector τ of distinct ability levels τk, 1 ≤ k ≤ K,

K ≥ 2, it is assumed that the 3PL model holds for F in the set Fτ . The corresponding set S3τ

consists of p in Sm that satisfy (1) and (5) for some F in Fτ and for some P in P3. In this case,

local restriction occurs if 3q + K < 2q, and the model is locally unrestricted if q ≤ 3. Once again,

the theoretical existence of local restriction does not necessarily ensure that parameter estimation

is really practical.

2. The General 2PL and 3PL Cases

As already noted, the general 2PL and 3PL models are locally unrestricted. Proof relies on

the following theorem.

Theorem 1 Let λ be in Λ, and let (1) hold. Let T be a subset of Sm such that p is in T if (7)

holds for some F in F . Let c be the function from the real line R to RJ with coordinates

cy = exp(y′λ), y ∈ J.

Let the c(θ), θ real, span RJ . Then model M(T ) is locally unrestricted.

Proof. Consider distinct θk, 1 ≤ k ≤ m, such that c(θk), 1 ≤ k ≤ m, spans RJ . Let Am

be the unit simplex in Rm, so that an m-dimensional vector a is in Am if the coordinates ak are
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nonnegative for 1 ≤ k ≤ m and if
∑m

k=1 ak = 1. Let a be in Am, and let F be the distribution

function of a random variable that assigns probability ak to θk for 1 ≤ k ≤ m. If

p =
m∑

k=1

akV (θk)c(τk),

then (7) holds. Thus T includes p. Because a is arbitrary, T includes the simplex D with vertices

V (τk)c(τk), 1 ≤ k ≤ m. To demonstrate that ir(T ) is nonempty, it suffices to show that ir(D) is

nonempty. To do so, it suffices in turn to demonstrate that

m∑
k=1

akV (τk)c(τk) = 0 (11)

and
m∑

k=1

ak = 0 (12)

only if ak = 0 for 1 ≤ k ≤ m (Rockafellar, 1970, pp. 6, 13). By assumption, (11) implies that

akV (τk) is 0 for each k, so that ak = 0 for 1 ≤ k ≤ m.

The simplest application of the theorem is to the 2PL model. Consider the following result.

Theorem 2 The general 2PL model is locally unrestricted.

Proof. Consider aj , 1 ≤ j ≤ q, such that

sy =
q∑

j=1

ajyj

has m distinct values for y in J . Let τk, 1 ≤ k ≤ m, be distinct real numbers. Consider arbitrary

real γj , ≤ j ≤ q, and let (9) and (3) hold. Let

ty =
q∑

j=1

γjyj .

In Theorem 1,

cy(τk) = exp(τksy) exp(−ty).

The determinant of an m by m matrix with coordinates exp(bidk), 1 ≤ i ≤ m, 1 ≤ k ≤ m, is

positive definite if bi is strictly increasing in i and dk is strictly increasing in k (Karlin & Studden,

1966, pp. 9–10). By elementary linear algebra, it follows that the c(τk), 1 ≤ k ≤ m, must be

7



linearly independent. Because RJ has dimension m = 2q, it follows that the c(τk), 1 ≤ k ≤ m,

span RJ , so that the conditions of Theorem 1 are satisfied.

Because S2 ⊂ S3 ⊂ Sm, it follows that ir(S2) ⊂ ir(S3) ⊂ ir(Sm). Thus Theorem 2 implies

that the general 3PL model M(S3) is locally unrestricted, as is the general one-dimensional model

M(Sm).

Examination of the proof of Theorem 1 reveals a further problem with the 2PL and 3PL

models. In the 2PL case, if a is chosen as in the proof of Theorem 2, γ is in Rq, and p satisfies

(6), (7), and (9), then open neighborhoods O of a and O′ of γ exist such that, if b is in O and δ

is in O′, then a distribution function G exists such that

µ = θb− δ,

W =
q∏

j=1

[1 + exp(−µj)]−1,

and

py =
∫

W exp(y′µ)dG.

Thus the model parameters aj and γj are not estimable in the general 2PL model. Similar

comments apply to estimation of aj , cj , and γj in the general 3PL model.

3. Dimension Theory and Local Restriction

In many cases, for a nonempty subset T of the simplex S, a determination that M(T ) is

locally restricted is based on a determination of the topological dimension of T . The topological

dimension dim(T ) of T may be defined in terms of finite open coverings. Here a finite class C of

nonempty open subsets of RJ is a finite open covering of T if each x in T is included in some C in

C. A finite open cover D of T is a refinement of C if to each C in C corresponds a D in D such

that D ⊂ C. The finite open cover D has integer order k ≥ 0 if distinct sets Di, 1 ≤ i ≤ k + 1, in

D exist such that ∩k+1
i=1 Di is nonempty and if no distinct sets Di, 1 ≤ i ≤ k + 2, in D exist such

that ∩k+2
i=1 Di is nonempty. The topological dimension dim(T ) of T is the smallest integer k ≥ 0

such that every finite open cover C of T has a refinement D of order k (Hurewicz & Wallman,

1941, pp. 5, 54, 56).

As evident from the following known results, the topological dimension as defined here does

have properties intuitively expected of a definition of dimension.
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Theorem 3 If U is a nonempty subset of T and T is a subset of S, then dim(U) ≤ dim(T )

(Hurewicz & Wallman, 1941, p. 26).

Theorem 4 The simplex S has topological dimension 2q − 1 (Hurewicz & Wallman, 1941, p. 46).

Theorem 5 If T is a nonempty subset of S, then dim(T ) = 2q−1 if, and only if, ir(T ) is nonempty

(Hurewicz & Wallman, 1941, p. 46).

An alternative version of Theorem 5 is that M(T ) is locally unrestricted if, and only if,

dim(T ) = 2q − 1, and M(T ) is locally restricted if, and only if, dim(T ) < 2q − 1.

Theorem 6 If T is a nonempty subset of S, r ≥ 1 is an integer, O is a subset of Rr with nonempty

interior, g is a continuous one-to-one function from O onto T , and g−1 is also continuous, then T

has dimension r (Hurewicz & Wallman, 1941, p. 46)

Under the conditions of Theorem 6, an r-dimensional parameter η in O is uniquely defined

by the equation p = g(η).

Theorem 7 If T is a nonempty subset of S, if r ≥ 1 is an integer, if O is the union of a countable

number of closed and bounded nonempty convex subsets of Rr, and g is a continuously differentiable

function from O onto T , then dim(T ) ≤ r

Proof. The conclusion follows from standard results concerning Hausdorff dimension

(Falconer, 1990, pp. 29–30) given the relationship of Hausdorff dimension to topological dimension

(Hurewicz & Wallman, 1941, p. 104).

In Theorem 7, the condition on O holds if O = A ∩B for nonempty convex subsets A and B

of Rr such that A is closed and B is open (Haberman, 1996, p. 180). In all examples considered

in this report, the conditions on O are satisfied.

Theorem 8 Under the conditions of Theorem 7, let g have coordinates gy for y in J , and let the

gradient of gy be ∇gy. Let U be the subset of η in the interior of O such that the vectors ∇gy(η),

y in J , span Rr. If U is nonempty, then dim(T ) = r.

Proof. For η in U , there exists a subset K of J with r elements such that the ∇gy(η) are

linearly independent for y in K. The inverse-mapping theorem then implies that a nonempty
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open subset N of O and a nonempty subset Z of T exist such that the restriction of g to N is a

one-to-one function onto B with a continuous inverse (Loomis & Sternberg, 1968, p. 167). Given

Theorems 3, 6, and 7, both B and T have dimension r.

Theorem 8 has significant impact on use of maximum likelihood. Let the conditions of

Theorem 8 hold, and let T ⊂ S0. Define η, N , and Z as in the proof of Theorem 8, and let

p = g(η). Consider the nonsingular information matrix

I =
∑
y∈J

[gy(η)]−1∇gy(η)[∇gy(η)]′.

Let η̂ in N be a function of f such that g(η̂) = p̂ whenever p̂ is a maximum-likelihood estimate of

p under the model M(Z), so that η̂ is the maximum-likelihood estimate of η. Then n1/2(η̂ − η)

converges in distribution to a multivariate normal random vector with mean 0 and covariance

matrix I−1 (Birch, 1964). If g is a one-to-one function with a continuous inverse, then N can

be defined to be the interior of O and η̂ can be defined so that g(η̂) = p̂ whenever p̂ is a

maximum-likelihood estimate of p under model M(T ).

In Theorem 8, the condition that ∇gy(η), y in J , spans Rr is equivalent to the condition that

no b in Rr exist such that b 6= 0 and b′∇gy(η) = 0 for all y in J .

The Rasch Model

Given these preliminaries, it is readily shown that the general Rasch model is locally restricted

if, and only if, q ≤ 2. Consider the following theorem.

Theorem 9 The topological dimension dim(S1) = 2q−1, so that the general Rasch model is locally

restricted if, and only if, q > 2.

Proof. Let uy =
∑q

j=1 yj for y in J , so that uy is a nonnegative integer not greater than q.

Let g be the real function on R2q−1 such that

gy(x) = c(x) exp

2q−1∑
j=1

xjtjy

 , (13)

c(x) =

∑
y∈J

exp

2q−1∑
j=1

xjtjy

−1

, (14)
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and

tjy =



1, 1 ≤ uy = j ≤ q,

0, uy 6= j, 1 ≤ j ≤ q,

1, yj+1−q = 1, q + 1 ≤ j ≤ 2q − 1,

0, yj+1−q 6= 1, q + 1 ≤ j ≤ 2q − 1.

(15)

Let S1e be the image of g. Then S1 ⊂ S1e (Tjur, 1982; Cressie & Holland, 1983; Haberman, 2004).

The function g from R2q−1 onto S1e is continuously differentiable and has a continuous inverse

g−1 (Haberman, 1973), so that Theorem 6 implies that dim(S1e) = 2q − 1. Because S1 ⊂ S1e,

Theorem 3 implies that dim(S1) ≤ 2q − 1.

To discuss the relationship of S1 and S1e requires consideration of two determinants. Let

Ak(x) be defined for x in R2q−1 and for 0 ≤ k ≤ q in the following fashion. If k is even, then let

d = k/2 and let Ak(x) be the d + 1 by d + 1 matrix with row i and column j equal to exp(xi+j−2)

for integers i and j from 1 to d + 1. If k is odd, then let d = (q + 1)/2, and let Ak(x) be the d by

d matrix with row i and column j equal to exp(xi+j−1) for integers i and j from 1 to d. Let N

be the set of x in R2q−1 such that the determinants of Aq(x) and Aq−1(x) are positive. The set

N is nonempty (Karlin & Studden, 1966, pp. 38, 171). Because a determinant of a matrix is a

continuous function of the elements of the matrix, N is a nonempty open subset of R2q−1. If x

is in N , then g(x) is in S1 (Cressie & Holland, 1983; Lindsay, Clogg, & Grego, 1991; Haberman,

2004). By Theorems 3 and 6, dim(S1) = 2q − 1. Because 2q − 1 < 2q − 1 if, and only if, q > 2,

it follows that from Theorem 5 that the general Rasch model is locally restricted if, and only if,

q > 2.

In Theorem 9, local restriction does not eliminate all problems of parameter estimation.

One has g(η) = p for a unique η in S1 if p is in S1, and the inverse of g is continuous;

however, the parameter η is not a simple quantity. Given (6), (7), and (8), ηj = γj+1−q − γ1 for

q + 1 ≤ j ≤ 2q − 1, so that contrasts between the γj are readily estimated, but

exp(ηj) =
∫

V (θ) exp(ajθ)dF (θ)∫
V (θ)dF (θ)

for 1 ≤ j ≤ q, so that the item discrimination a and ability distribution F are not determined by

the general Rasch model (Lindsay et al., 1991).

Given Theorem 9, it follows that the normal Rasch model and the latent-class Rasch model

are both locally restricted if q > 2. A bit more can be said in terms of parameter estimation given
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dimensional analysis. Consider the following results.

Theorem 10 In the normal Rasch model, dim(S1n) = q + 1, and M(S1n) is locally unrestricted

only if q = 2.

Proof. Let O be the subset of Rq+1 of vectors x with xq+1 > 0. For x in O, let

h(x, θ) =
q∏

j=1

[1 + exp(xq+1θxq+1 − xj)]−1,

and let

vy(x) =
q∑

j=1

yjxj .

Define uy as in the proof of Theorem 9. Let g be the function from O onto S1n with coordinates

gy, y in J , such that

gy(x) = exp[−vy(x)]
∫

h(x, θ) exp(xq+1uyθ)φ(θ)dθ.

Under the normal Rasch model, (6), (7), (8), and F = Φ imply that p = g(η) if ηj = γj for

1 ≤ j ≤ q and ηq+1 = a.

Given general results for exponential families with incomplete data, it is readily verified that

g is continuously differentiable (Sundberg, 1974). Let

dj(x, θ) = [1 + exp(xq+1θ − xj)]−1

for 1 ≤ j ≤ q, and let

d+(x, θ) =
q∑

j=1

dj(x, θ).

The gradient ∇gy(x) of gy at x has elements gjy(x), 1 ≤ j ≤ q + 1, such that gjy(x) is

− exp[−vy(x)]
∫

[yj − dj(x, θ)]h(x, θ) exp(xq+1uyθ)φ(θ)dθ

for 1 ≤ j ≤ q and

exp[−vy(x)]
∫

[uy − d+(x, θ)]h(x, θ) exp(xq+1uyθ)φ(θ)dθ

for j = q + 1. By Theorem 7, dim(S1n) ≤ q + 1.

Let b in Rq+1 satisfy

b′∇gy(x) = 0 (16)
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for all y in J . Let

cy(x, θ) =
q∑

j=1

(bj + bq+1θ)[yj − dj(x, θ)].

Then (16) can only hold if ∫
c(x, θ)h(x, θ) exp(xq+1uyθ)φ(θ)dθ = 0. (17)

Consider b in Rq+1 such that (16) holds. Let y in J have y1 = 0 and all other coordinates 0.

For 2 ≤ j ≤ q, let z in J have zj = 1 and all other coordinates 0. Then cy(x)− cz(x) reduces to

the constant b1 − bj , so that (17) implies that bj = b1. Thus∫
[b1 + θbq+1][k − d+(x, θ)]h(x, θ) exp(kxq+1θ)φ(θ)dθ = 0

for each integer k from 0 to q. The case of k = 0 yields

b1 = −bq+1

∫
θd+(x, θ)h(x, θ)φ(θ)dθ∫
d+(x, θ)h(x, θ)φ(θ)dθ

.

Given simple use of a change of variable formula, the case of k = q yields

b1 = bq+1

∫
θd+(r, θ)h(r, θ)φ(θ)dθ∫
d+(r, θ)h(r, θ)φ(θ)dθ

if rj = −xj for 1 ≤ j ≤ q and rq+1 = xq+1.

An analysis of signs provides a simple means to verify if b1 = bq+1 = 0. For any x in O,∫
d+(x, θ)h(x, θ)φ(θ)dθ > 0

and ∫
d+(r, θ)h(r, θ)φ(θ)dθ > 0.

It follows that b = 0 if ∫
θd+(x, θ)h(x, θ)φ(θ)dθ < 0 (18)

and ∫
θd+(r, θ)h(r, θ)φ(θ)dθ < 0. (19)

The inequalities (18) and (19) hold if x has coordinates xj = 0 for 1 ≤ j ≤ q, for x and r are the

same, and

h(x, θ)d+(x, θ)− h(x,−θ)d+(x,−θ)

13



is equal to

h(x, θ)d+(x, θ)[1− exp((q − 1)xq+1θ)] < 0

for θ > 0. Thus ∫
θd+(x, θ)h(x, θ)φ(θ)dθ

=
∫ ∞

0
θ[exp(xq+1θ)− exp(qxq+1θ)]d+(x, θ)h(x, θ)φ(θ)dθ

< 0.

It follows that x in O can be selected so that b must be 0 if (16) holds for all y in J . By

Theorem 8, dim(S1n) = q + 1, so that Theorem 5 implies that M(S1n) is then locally unrestricted

if, and only if, q + 1 = 2q − 1. Because q + 1 = 2q − 1 only holds if q = 2, M(S1n) is only locally

unrestricted if q = 2.

Given Theorem 9, the latent-class Rasch model is obviously locally restricted if q > 2, for

S1τ ⊂ S1. The following result shows that the latent-class Rasch model is locally unrestricted if

q ≤ 3.

Theorem 11 If q ≤ 3, then S1τ = S1, so that the latent-class Rasch model M(S1τ ) is locally

unrestricted for q = 2.

Proof. If p is in S1, then there exist a > 0, γ in Rq, ρ1 < ρ2, and nonnegative π1 and π2 such

that π1 + π2 = 1, (6), (7), and (8) hold for F the distribution function of a random variable that

assigns probability πk to ρk for k equal 1 or 2 (Karlin & Studden, 1966; Lindsay et al., 1991). Let

G be the distribution function of a random variable that assigns probability πk to τk for k equal 1

or 2. Let

b = a(ρ2 − ρ1)/(τ2 − τ2),

and let δ in Rq satisfy

δ = γ + a
τ2ρ1 − τ1ρ2

τ1 − τ2
1.

Let

µ(θ) = θb− δ

for θ real, and let

W =
q∏

j=1

[1 + exp(µj)]−1.

14



Then

py =
∫

W exp(y′µ)dG,

so that p is in S1τ . It follows that S1τ and S1 are the same, so that the conclusions of the theorem

follows from Theorem 9.

In general, an argument similar to that in Theorem 10 may be used to demonstrate that

dim(S1τ ) ≤ q + K. Consider the following theorem.

Theorem 12 In the latent-class Rasch model, dim(S1τ ) ≤ q + K.

Proof. Let O be the set of x in Rq+K such that xq+1 > 0, xj ≥ 0 for j > q + 1 and∑q+K
j=q+2 xj ≤ 1. Let h be the real function such that

h(x, θ) =
q∏

j=1

[1 + exp(xq+1θ − xj)]−1

for x in O and real θ. Define uy as in the proof of Theorem 9. Let g be the function from O onto

S1τ such that the coordinate gy, y in J , satisfies

gy(x) =
K−1∑
k=1

xq+1+kh(x, τk) exp(xq+1uyτk)

+

(
1−

K−1∑
k=1

xq+1+k

)
h(x, τK) exp(xq+1uyτK).

Note that p = g(η) if (6), (7), and (8) hold,
∑K

k=1 πk = 1, F is the distribution function for a

random variable that equals τk with probability πk for 1 ≤ k ≤ K, ηj = γj for 1 ≤ j ≤ q, ηq+1 = a,

and ηq+k+1 = πk for 1 ≤ k ≤ K − 1. It is easily verified that g is continuously differentiable. By

Theorem 7, dim(S1τ ) does not exceed q + K.

The upper bound in Theorem 12 is not necessarily achieved. For example, Theorem 11

implies that dim(S1τ ) = 3 < q + K if q = 2. On the other hand, Theorem 11 also implies that the

upper bound of q + K = 5 is achieved if q = 3 and K = 2. In general, because dim(S1) = 2q − 1,

dim(S1τ ) cannot exceed 2q − 1. Thus standard conditions for estimation of the parameters γj ,

1 ≤ j ≤ q, a, and τk, 1 ≤ k ≤ K − 1 cannot hold if K > q − 1.
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Restricted 2PL Models

Restricted 2PL models may be locally restricted. The required arguments are quite similar

to those used for restricted Rasch models. In the case of the normal 2PL model, the relationship

S1n ⊂ S2n and Theorem 10 clearly implies that dim(S2n) = 3 and M(S2n) is locally unrestricted if

q = 2. For q > 2, dim(S2n) = 2q + 1 and M(S2n) is locally restricted.

Given Theorem 11 and the relationship S1τ ⊂ S2τ , it is clearly true that the latent-class

2PL model is locally unrestricted for q = 2. For q ≤ 3, 2q + 1 ≤ dim(S2τ ) ≤ 2q + K − 1, so that

Theorem 5 implies that the model is locally restricted if 2q + K < 2q and locally unrestricted if

q = 3. The case of q = 3 can also be considered by use of equations used in latent-class analysis

that involve determinants and eigenvalues (Madansky, 1960). This argument relies on continuity

properties of eigenvalues and eigenvectors (Wilkinson, 1965, chaps. 1–2).

In principle, the latent-class 2PL model is locally restricted as long as K < 2q − 2q; however,

as evident in Section 4, it should not be concluded that use of a large value of K is wise.

Restricted 3PL Models

Restricted 3PL models also may be locally restricted. Arguments are again similar to those

used in Theorems 10 and 12. In the normal 3PL model, the relationship S2n ⊂ S3n ⊂ S and

Theorem 3 imply that dim(S3n) = 2q − 1 and M(S3n) is locally unrestricted for q ≤ 3. For q > 3,

M(S3n) is locally restricted and dim(S3n) = 3q.

In the case of latent-class 3PL models, the relationship S2τ ⊂ S3τ implies that M(S3τ ) is

locally unrestricted if q ≤ 3. For q > 3, dim(S3τ ) ≤ 3q + K − 1. If K = 2, then S3τ = S2τ , so that

dim(S3τ ) = dim(S2τ ) = 2q + 1 for q ≥ 3, and M(S3τ ) is locally restricted for q > 3. To verify the

identity of S2τ and S3τ , consider the following theorem.

Theorem 13 If K = 2, then S2τ = S3τ .

Proof. Because S2τ ⊂ S3τ , it suffices to show that S3τ is in S2τ . If p is in S3τ , then (1), (5),

and (10) hold for some aj > 0, real γj , and cj in [0, 1) and some distribution function F such that,

for some nonnegative π1 and π2 with sum π1 + π2 = 1, F is the distribution function of a random

variable that assigns probability πk to τk for 1 ≤ k ≤ K = 2. Define b and γ in Rq by solution of

the simultaneous equations

bjτk − δj = log[Pj(τk)/Qj(τk)], 1 ≤ k ≤ 2,

16



for 1 ≤ j ≤ q. Let µ(θ) = θb− δ. Then

Pj(τk) = {1 + exp[−µj(τk)]}−1

and

Qj(τk) = {1 + exp[µj(τk)]}−1

for 1 ≤ j ≤ q, so that p is in S2τ .

4. Parameter Estimation for Latent-Class Models for Item Responses

Even though simple conditions are available to ensure that latent-class 2PL and 3PL

models are locally restricted, these conditions do not imply that parameter estimation is readily

accomplished. Some problems reflect fundamental problems of parameter identification that occur

when the upper bound for the topological dimension is not achieved. For example, in a latent-class

3PL model with K = 2, it is not possible to identify aj , cj , and γj , as is evident from Theorem 13.

More complex problems involve cases in which the conditions of Theorem 7 are satisfied for

S2τ or S3τ for some function g but the information matrix I is nearly singular. This situation has

adverse effects on numerical algorithms for computation of maximum-likelihood estimates and

adverse effects on the accuracy of parameter estimates. Such difficulties have been noted previously

(Heinen, 1996), and they are relevant both with the EM algorithm (Dempster, Laird, & Rubin,

1977) and with the stabilized Newton-Raphson algorithm (Haberman, 1988). In particular, the

problems of parameter estimation for latent-class 2PL and 3PL models has practical consequences

for item calibration in the National Assessment of Educational Progress (NAEP) based on the

Parscale/NAEP program option to employ a latent-class 3PL model with 41 latent classes.

The importance of the problem is examined in this section by use of the latent-class 2PL

model. It should be emphasized that problems will be substantially more severe in the 3PL case.

For analysis in this section, the parametrization uses the subset O of Rr, r = 2q + K − 1, such

that x is in O if xj > 0 for q + 1 ≤ j ≤ 2q, xj ≥ 0 for j > 2q, and
∑r

j=2q+1 xj ≤ 1. For x in O, θ

real, and y in J , let

h(x, θ) =
q∏

j=1

[1 + exp(xq+jθ − xj)]−1,

vy(x) =
q∑

j=1

xjyj ,
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ty(x) =
q∑

j=1

xq+jyj ,

and

cy(x, θ) = exp[−vy(x)]h(x, θ) exp[θty(x)].

Let the function g from O onto S2τ be defined so that, for y in J , g(x) has coordinate

gy(x) =
K∑

k=1

x2q+kcy(x, τk)

for y in J , where x2q+K denotes 1−
∑r

j=2q+1 xj . If, for some real aj > 0 and real γj , 1 ≤ j ≤ q,

(6), (7), and (9) hold for the distribution function F of a random variable that is equal to τk with

probability πk ≥ 0, 1 ≤ k ≤ K, where
∑K

k=1 πk = 1, then p = g(η) for η in O such that xj = γj

for 1 ≤ j ≤ q, xq+j = aj for 1 ≤ j ≤ q, and x2q+j = πj for 1 ≤ j ≤ K − 1.

Let

dj(x, θ) = [1 + exp(−xq+jθ + xj)]−1

for 1 ≤ j ≤ q. Then the partial derivatives of gy are the continuous functions gjy with values

gjy(x) of

−
K∑

k=1

x2q+k[yj − dj(x, τk)]cy(x, τk)

for 1 ≤ j ≤ q,
K∑

k=1

x2q+kτk[yj − dj(x, τk)]cy(x, τk)

for q + 1 ≤ j ≤ 2q, and

cy(x, τk)− cy(x, τK)

for 2q + 1 ≤ j ≤ r. Thus all conditions in Theorem 7 are satisfied. In Theorem 8, it is often the

case that U is indeed nonempty and η is in U , but the matrix I is so close to singular that η

cannot be accurately estimated by use of a reasonable sample size.

The problem of near singularity of I arises primarily from the behavior of the partial

derivatives gjy for j > 2q that are associated with the probabilities πk, 1 ≤ k ≤ K − 1. Recall

from elementary linear algebra that the smallest eigenvalue of I is the minimum of b′Ib for b

in Rr such that b′b = 1. Let zy denote the K-dimensional vector with coordinates cy(η, τk) for

1 ≤ k ≤ K. Then this minimum is certainly no greater than the minimum of

Ψ(b) =
∑
y∈J

p−1
y (b′zy)2
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for b in RK such that
∑K−1

k=1 b2
k = 1 and

∑K
k=1 bk = 0.

For fixed η, cy(η, τ) is infinitely differentiable in τ . Let v̄ be the average of the vy for y in J ,

and let τ̄ be the average of the τk for 1 ≤ k ≤ K. For each integer r ≥ 1, Taylor’s theorem can be

used to show that zy has a polynomial approximation νy with coordinate k equal to

exp(ty)
r∑

u=0

u∑
s=0

wus(τk − τ̄)u(vy − v̄)s.

If (r + 1)/2 ≤ K, then the bk can be selected so that b′νy is 0 for each y in J . Thus

Ψ(b) =
∑
y∈J

p−1
y [b′(zy − νy)]2.

As K increases and the τk are all in a fixed finite interval, the argument implies that the minimum

of Ψ(b) should approach 0 rather rapidly. Thus it is reasonable to expect that I will be nearly

singular even for K somewhat less than 2q − 2q.

This argument suggests that the problem of near singularity is less severe for a given number

of latent categories K if q is larger, for the variability of vY is then increased. On the other hand,

the argument is also relevant in the Rasch model case of ai constant, so that the use of a model

with a finite number of values of θi does not necessarily lead to well-identified parameters even in

the Rasch model unless K is relatively small.

For some understanding of the issue, consider a case in which q = 11; the item difficulties are

βj = −3 + 3(j − 1)/5 and the item discriminations are aj = 0.5 + (j − 1)/10 for 1 ≤ j ≤ q and

the examinee ability values and respective probabilities are τk = k − 3 and πk = 0.2 for 1 ≤ k ≤ 5.

Recall that γj = ajβj for 1 ≤ j ≤ q. In this case, the largest element of I−1 is 341.5, so that each

parameter has an asymptotic standard deviation less than 0.1 if the sample size is about 34,000.

If K is increased to 10, the πk are each 0.1, and τk = −1.8 + 0.4(k − 1) for 1 ≤ k ≤ 10, then the

largest element of the inverse of the information matrix of Yi is 8,302,862.9, so that comparable

accuracy of parameter estimates requires about 830,000,000 observations. Thus in the second case,

it is unreasonable to expect satisfactory performance from maximum likelihood. In the former

case, some hope exists. The most extreme problems involve diagonal elements of the information

matrix that correspond to the latent probabilities πk; however, it should be emphasized that other

parameter estimates are also affected. The smallest value of a diagonal element of I−1 is only 0.09

for the case of five latent classes, while the corresponding figure for 10 latent classes is 72.3.
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The problems considered here are not solved if the aj are all constant, as in the Rasch model.

For the case just examined with K = 10, change all aj to 1. Then the maximum value of an

element of I−1 is 1,734,948.5.

Even if the Rasch model is assumed to hold with each aj = 1, problems persist. Define I

based on the function g in the proof of Theorem 12. The inverse information matrix for this case

has a largest diagonal element of size 1,734,210.6. The difficulties encountered do disappear if the

latent probabilities πk are known. For the original 2PL case of K = 10, the maximum element of

the inverse information matrix for the remaining parameters γj and aj is only 77.9. Comparable

results are achieved for the normal 2PL model. In this case, the maximum element of the inverse

information matrix is 22.1.

It is somewhat difficult to characterize precisely when near singularity occurs given that q, βj ,

aj , K, πk, and τk all have impact; however, it certainly should not be assumed that use of the 2PL

model with latent classes will be satisfactory without regard to the choice of K and τk. In typical

situations, it should also be understood that results for the 3PL model are likely to be even worse.

5. Conclusions

Unlike in the case of the Rasch model, the 2PL and 3PL models do not provide a simple

approach for parameter estimation in which a parametric model for the ability distribution is not

assumed. In addition, simple approaches based on latent classes can be very unsatisfactory unless

the number of latent classes is rather small. Thus attempts to use 2PL and 3PL models with more

general ability distributions than the standard normal distribution require quite careful work, and

steps must be taken to verify that parameters are determined with reasonable accuracy.
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